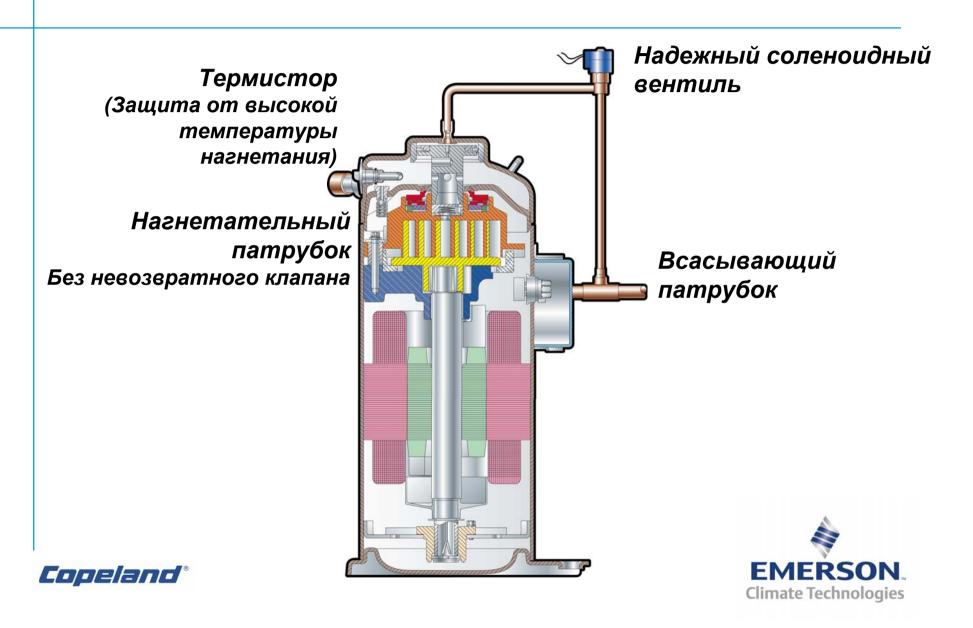
Digital Scroll

Конструкция и применение

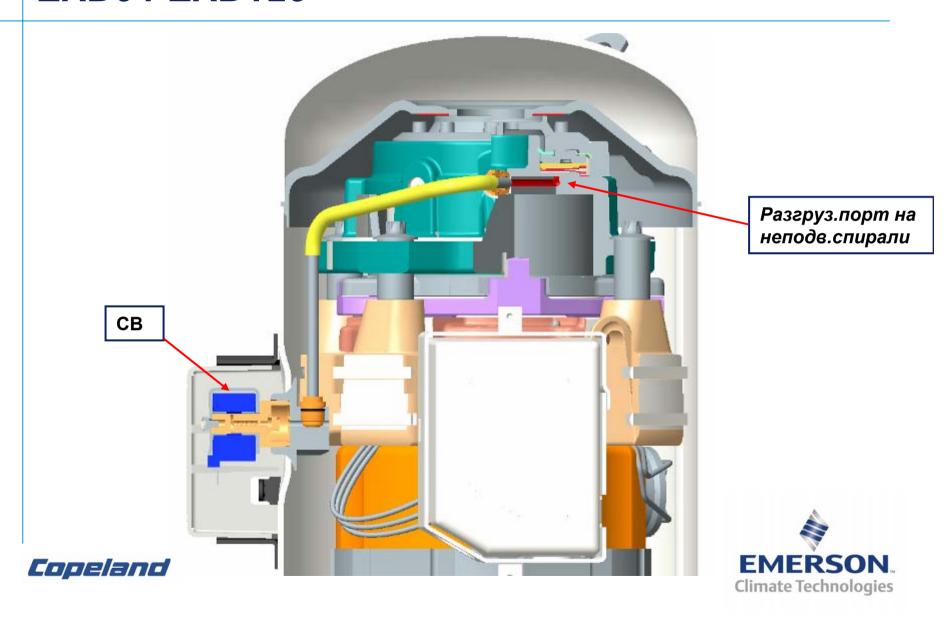
Модели для холодильной техники

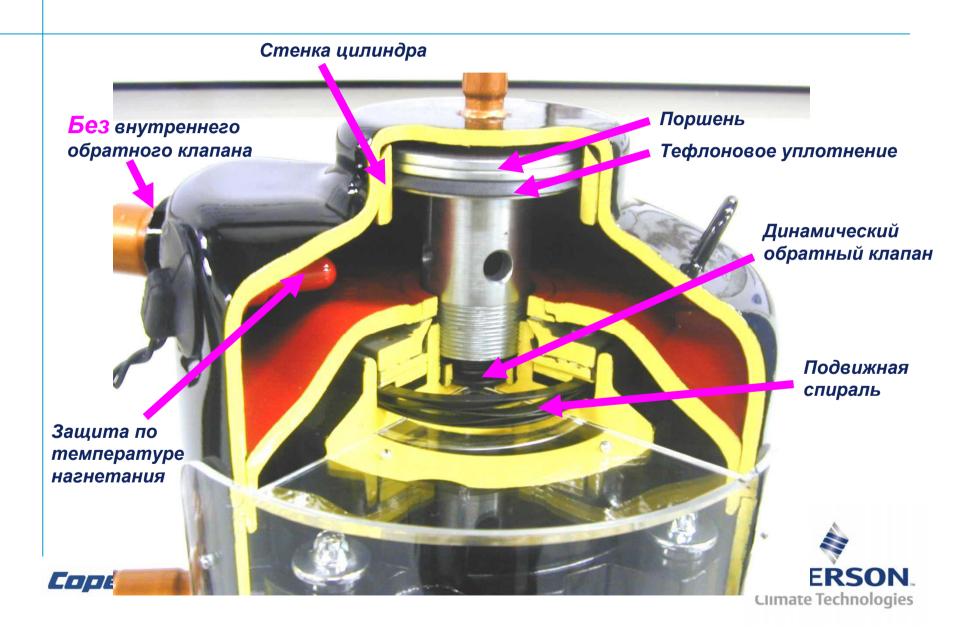
2 модели **с плавным регулированием** холодопроизводительности для **R404A**

Компрессоры Copeland Scroll Digital™


Модель	Номинальная мощность привода, л.с.	Объемная производи- тельность, м³/час	Холодопроиз- водител- ность (100%) кВт ¹	Холодильный коэффициент СОР (100%)	Вес брутто, кг	Электропитание, В / Фаз. / Гц
ZBD30KCE	4,0	11,7	7,0	2,2	37	400 / 3 / 50
ZBD45KCE	6,0	17,1	10,2	2,1	40	400/3/30

⁽¹⁾ EN 12900: кипение 5°C, конденсация 50°C, перегрев 10K, переохлаждение 0K.




Конструкция компрессора

Конструкция компрессора ZRD94-ZRD125

Технические особенности

Основные отличия от стандартного спирального компрессора

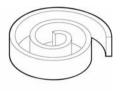
- Изменена конструкция верхней части корпуса и неподвижной спирали
- Цилиндр встроен в верхнюю часть компрессора
- Больший осевой ход неподвижной спирали
- Необходим динамический обратный клапан
- Изменена конструкция плавающего уплотнения
- Вертикально подвижный поршень
- Соленоидный вентиль

Регулирование холодопроизводительности

- Новый способ регулирования
- Соответствует стандартам качества Copeland
- Диапазон регулирования от 10% до 100%
- Превосходные эксплутационные характеристики
- Простота управления (контроллер) **Сорејана**

Регулирование холодопроизводительности

- Плавное регулирование холодопроизводительности в пределах от 100% до 10%
 - Регулирование производительности производится посредством изменения времени эффективного сжатия
 - Длительность включения постоянно меняется
 - Длительность цикла до 30 секунд
- Разгрузка достигается посредством вертикального хода неподвижной спирали
 - Соленоидный вентиль позволяет создать перепуск газа высокого давления для разгрузки спирального блока
 - Электродвигатель работает постоянно
 - Низкое потребление электроэнергии

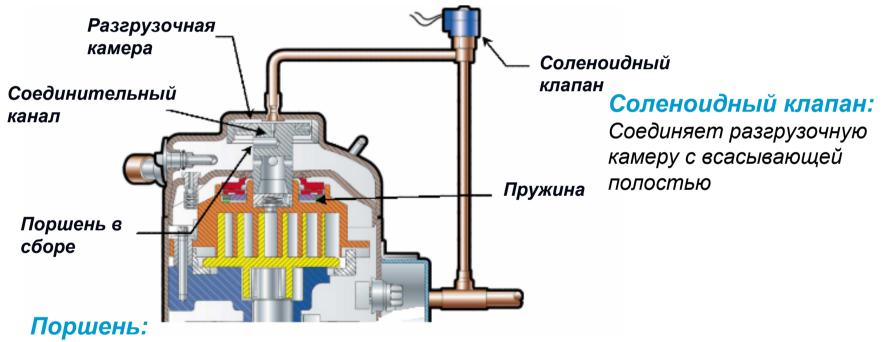

Регулирование холодопроизводительности

Регулирование холодопроизводительности базируется на основе согласования спиралей

- Технология Copeland Scroll основана на Радиальном и Осевом согласовании спиралей
- Согласование спиралей обеспечивает высокую надежность, эффективность и долговечность компрессора.
 - Устойчивость к «влажному ходу»
 - Устойчивость к попаданию механических частиц
- Механизм регулирования спирального компрессора основан на **осевом согласовании**

Copeland°

Осевое согласование Радиальное согласование



Механизм регулирования

Разгрузочная камера:

Над поршнем

Соединена с полостью высокого давления технологическим сверлением диаметром 0.6 мм

Жестко закреплен на неподвижной спирали Когда поршень движется вверх, он тянет за собой неподвижную спираль.

EMERSON

Climate Technologies

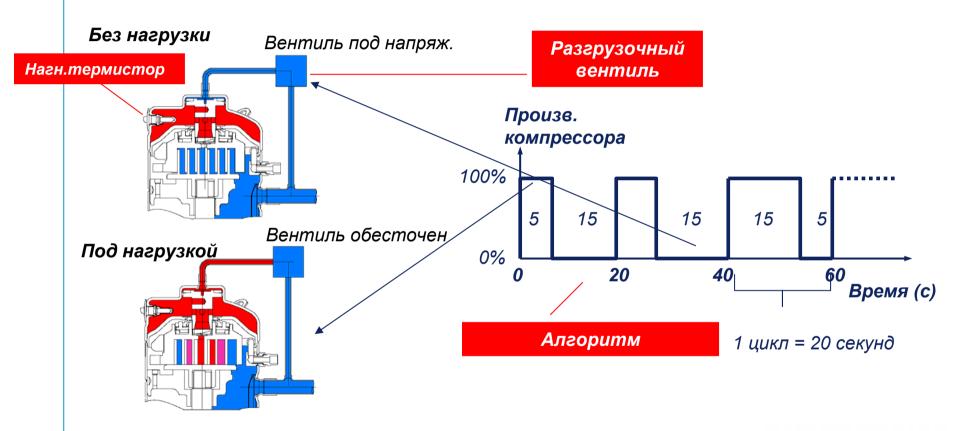
Механизм регулирования

Соленоидный вентиль закрыт (нормально закрытый СВ) :

 Давление с обоих сторон поршня равно давлению нагнетания, а усилие пружины обеспечивает контакт спиралей

Соленоидный вентиль открыт (подано питание на катушку)

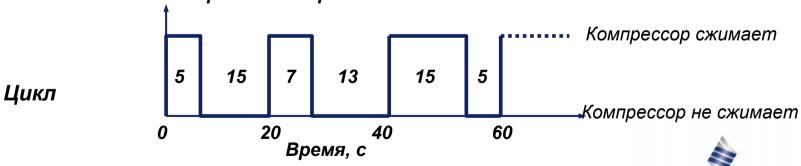
- Очень малое количество газа высокого давления из разгрузочной камеры перепускается на сторону низкого давления
- Поршень поднимается вверх и тянет за собой верхнюю спираль.
- Происходит меновенное объединение всех полостей внутри спирального блока, т.е. компрессор не сжимает.
- При обесточивании соленоидного вентиля он закрывается, перекрывая канал сброса давления и процесс сжатия возобновляется


• Осевой ход неподвижной спирали очень мал, менее 1,0 мм

— Количество газа высокого давления, перепускаемого на сторону низкого давления очень мало (диаметр сверления 0,6мм)

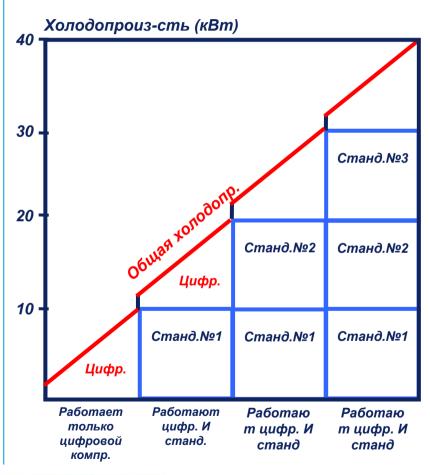
Climate Technologies

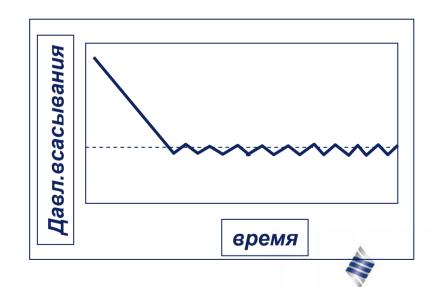
Алгоритм работы



Алгоритм работы

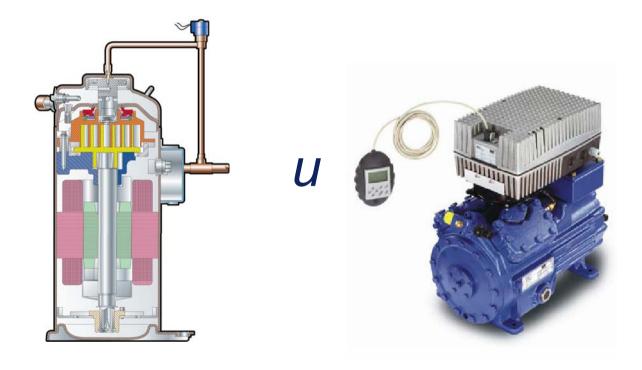
- Производительность компрессора составляет либо 100%, либо 0%.
- Плавное регулирование производительности достигается путем изменения времени эффективного сжатия компрессора
- Пример:
 - Цикл работы составляет 20 с, если компрессор осуществляет сжатие в течении 10с и не сжимает в течении 10 с, то производительность компрессора составляет 50%
 - Если компрессор сжимает в течении 5 с, то производительность равна
 25%


Мощность регулируется в пределах 10-100% посредством изменения времени открытия соленоидного вентиля


Climate Technologies

Преимущества: Компрессорные станции

- Плавное регулирование
- Точное поддержание давления всасывания



EMERSON

Climate Technologies

Преимущества Digital Scroll

Механизм изменения производительности

Digital Scroll

Изменение производительности разгрузкой спирального блока

При разгрузке компрессор не сжимает газ

Изменение производительности достигается путем изменения времени разгрузки

Инверторы

Изменение частоты вращения вала электродвигателя

Производительность меняется при изменении частоты вращения вала электродвигателя

Сигнал АС конвертируется в DC (меняется форма волны) и затем обратно в АС

Ступенчатое регулирование

Использование компрессоров с фиксированной производительностью

Использование системы байпаса горячего газа для регулирования производительности

Диапазон изменения производительности

Digital Scroll

Диапазон изменения производительности от 10% до 100%

Процесс изменения производительности происходит непрерывно Быстрая реакция

Инверторы

Диапазон изменения частоты от 28Гц до 110Гц

Диапазон изменения производительности от 20% до 100%

При необходимости изменить производительность частота меняется ступенчато

Медленная реакция

Ступенчатое регулирование

Ограниченное количество ступеней регулирования производительности

Энергетическая эффективность

Digital Scroll	Инверторы	Ступенчатое регулирование		
Высокая эффективность при частичной нагрузке В разгруженном	Потери в инверторе при работе составляют от 10% до 25% в	Хороший холодильный коэффициент пи 100% и 50% нагрузке		
состоянии потребление составляет 500Вт	зависимости от конструкции	Системы с байпасированием		
Нет потерь в инверторе	Потери существуют для всей гаммы оборудования	горячего газа энергетически неэффективны		

Контроль температуры

Digital Scroll

Плавное изменение производительности гарантирует прецизионное поддержание температуры ± 0,5°C.

Инверторы

Точность зависит от качества инвертора. Обычно ± 1,0°C. Замедленная реакция на

изменение нагрузки.
Точное поддержание температуры невозможно.

Ступенчатое регулирование

Нет возможности точного поддержания температуры.

Электромагнитное излучение

D	iq	ital	S	cr	oll	

Инверторы

Ступенчатое регулирование

Отключение и подключение спирального блока является чисто механической операцией. Нет излучения.

Является источником высокого уровня электромагнитного излучения.

Обязательная установка ЭМ фильтров.

Ограничения на использование в телекоммуникации. Нет ЭМ излучения.

Возврат масла

Digital Scroll

Очень низкий унос. Максимальный объем циркулирующего масла равняется 1%.

При отключении спирального блока масло компрессор не покидает.

Скорость перемещения газа по системе равна скорости при 100% производительности, что гарантирует возврат масла.

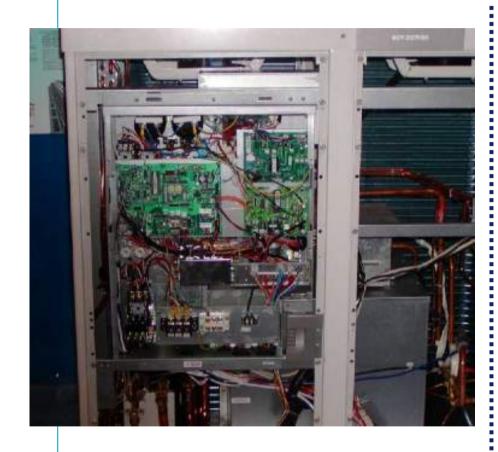
Инверторы

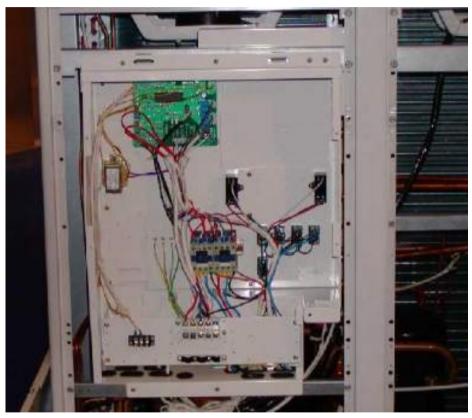
Количество циркулирующего масла меняется с изменением производительности.

Очень много масла уносится при работе на повышенных частотах.

Обязательно применение маслоотделителей и системы возврата масла.

Ступенчатое регулирование

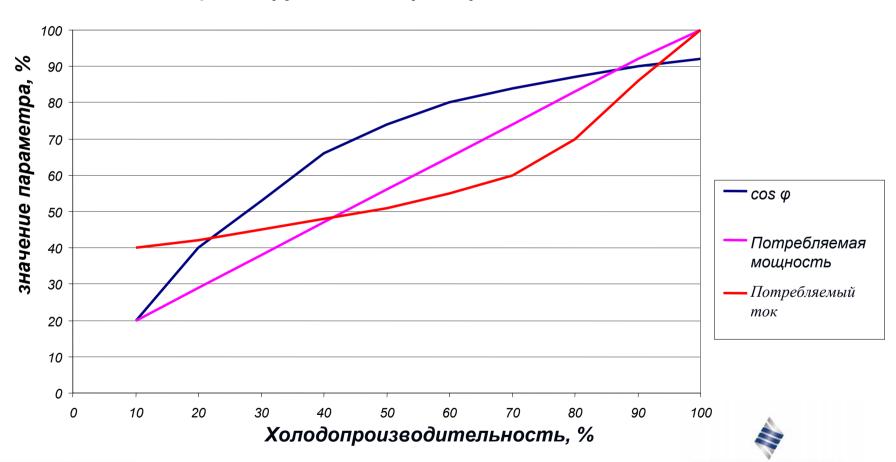

Нет особенных проблем с возвратом масла.


Обязательно применение маслоотделителей и системы возврата масла.

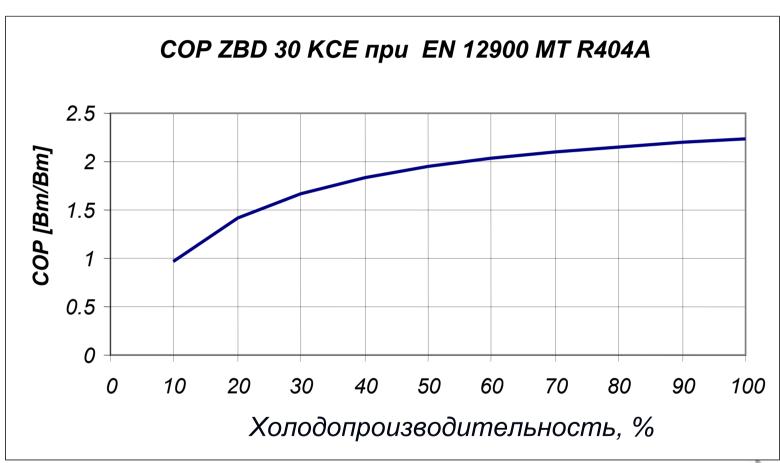
Простота и надежность системы

Инвертор

Преимущества систем с компрессором Digital Scroll


- 1. Эффективность
- Низкая стоимость по сравнению с инвертором
- з. Более высокая надежность механического метода регулирования по сравнению с электронным (инвертор)
- 4. Простота конструкции
- **5.** Нет электромагнитного излучения
- 6. Самый широкий диапазон регулирования
- 7. Hem проблем с возвратом масла

Digital Scroll. Изменения технических характеристик


Взаимосвязь между потребляемой мощностью, потребляемым током и соѕф и нагрузки на компрессор

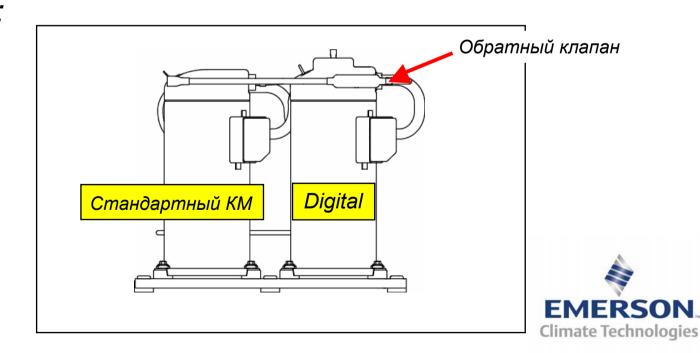
Climate Technologies

Digital Scroll. Изменения холодильного коэффициента

Важные особенности конструкции

- Обратный клапан для тандемов и станций
- Соленоидный вентиль и линия сброса давления
- Применение в компрессорных стациях
- Гарантированный возврат масла
- Температурная защита

Обратный клапан

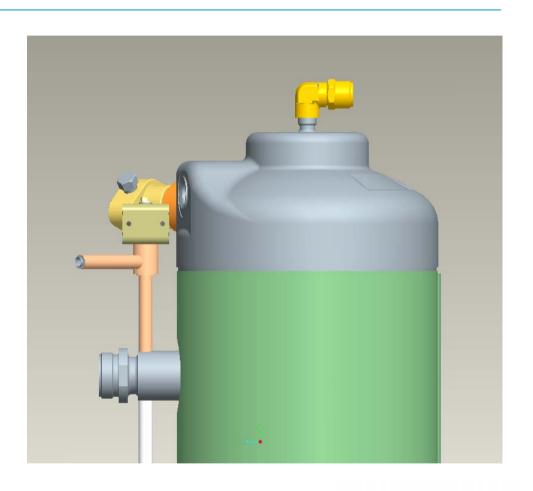

- После изменения конструкции механизма разгрузки обратный клапан в нагнетательном патрубке компрессора отсутствует.
- При одиночной эксплуатации компрессора нет необходимости для установки внешнего обратного клапана.
- Для предотвращения перетечек газа на сторону всасывания в процессе разгрузки, динамический обратный клапан встроен в нагнетательный порт неподвижной спирали.
- Конструкция динамического обратного клапана позволяет применять цикл откачки, поскольку клапан предотвращает перетечки газа в период, когда сжатие не происходит.
- В тандеме внешний обратный клапан следует устанавливать в нагнетательном трубопроводе как показано на следующем слайде. Такая установка предотвращает байпасирование газа высокого давления на всасывание, когда цифровой компрессор не используется.

Climate Technologies

Обратный клапан

- Рекомендуемые модели обратных клапанов:
 - ZBD30: ...1/2" Henry 3136557 применен в агрегате ОМQ
 - ZBD45: ...5/8" Henry 3135725 применен в агрегате ОМQ
- Установка обратного клапана на расстоянии не менее 150 мм от нагнетательного патрубка
- Тандем:

Разгрузочная линия


- Рекомендации: Трубка с установленным соленоидным вентилем должна быть как можно короче (< 75 мм)
- Разгрузочную линию следует испытать на прочность и плотность при рабочих частотах 50 и 60 Гц на одиночном компрессоре в лабораторных условиях. Однако, в исключительных случаях эксплуатации, когда компрессор подвержен воздействию дополнительной вибрации (централи и установки на транспорте), производители рекомендуют усилить крепление этой линии, во избежание ее разрушения.

Разгрузочная линия. Пайка к патрубку типа Rotalock

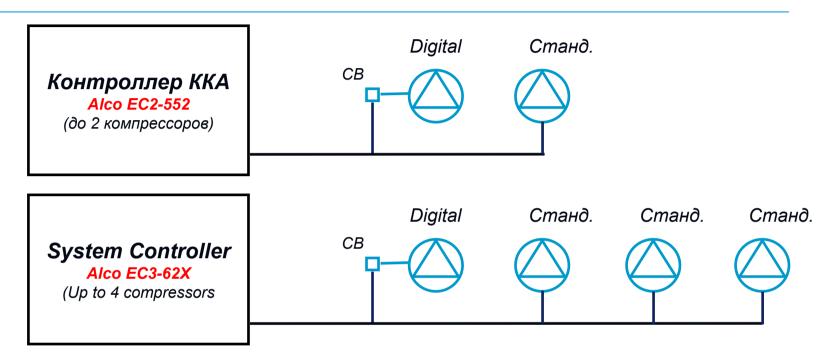


Разгрузочная линия. Конструкция

Возврат масла

- Обеспечение возврата масла при малой производительности
- Скорость газа достаточна, когда происходит процесс сжатия
- Нет необходимости в применении маслоотделителя или иных решений для обеспечения возврата масла.

В системах с несколькими испарителями, с длиной горизонтального участка трубопровода до 100м и вертикального до 15м проблем с возвратом масла не возникает.


Применение в станциях центрального холодоснабжения

- Жесткие или мягкие опоры для Digital (учитывая условия по вибрации)
- При пайке необходимо защитить СВ
 - В целях предотвращения попадания окалины в проходное сечение вентиля
- Рекомендации по подбору ресивера и отделителя жидкости
 - Нет отличий от подбора для стандартных систем
- Как гарантировать возврат масла
 - Аналогично стандартным централям, поскольку Digital перекачивает 100% потока
- Как обеспечить необходимый уровень масла
 - Двухфазный трубопровод или TraxOil
- Потребность в дозаправки системы маслом
 - Hem

Контроллеры для Digital Scroll Alco Controls EC2 / EC3 ККА и станции

- Производители могут использовать собственные контроллеры
- EC2 для компрессорно-конденсаторных агрегатов
- ЕСЗ для компрессорных станций
- Возможна поставка через фирму Copeland

Контроллеры для Digital Scroll

Контроллер ККА Alco EC2-552:

- Питание 24В перем.тока
- Управление по давлению всасывания
- Управление стандартным компрессором (вкл./выкл.)
- Управление цифровым компрессором
- Наличие аналогового сигнала на регулятор скорости или частотный регулятор для вентиляторов конденсатора
- Сетевое применение TCP/IP
- Версия **EC2-551** для LON применяется только в агрегатах Copeland

Параметры цикла:

- Фиксированный 20 секунд
- Настройка минимальной производительности через параметры контроллера
- Минимальная производительность 2 секунды (10%)

Alco EC2-552

Контроллеры для Digital Scroll

Контроллер Alco EC3-621/ EC3-622:

- Управление по давлению всасывания
- Управления до 3 компрессоров (вкл./выкл.)
- Управление 1 цифровым компрессором
- Сетевое применение:
 - EC3-621 LON
 - EC3-622 TCP/IP
- Управление конденсатором

• Параметры цикла:

- Фиксированный 20 секунд
- Настройка минимальной производительности через параметры контроллера
- Минимальная производительность 2 секунды (10%)

Модели для систем кондиционирования

7 моделей компрессоров, 5 моделей тандемов с плавным регулированием холодопроизводительности для R407C (R22)

	Модель	Номинальная мощность привода, л.с.	Холодопроиз- водител- ность (1,00%) кВт ¹	Холодильный коэффициент СОР (100%)	Диаметр корпуса, мм	Высота, мм	Вес брутто, кг
	Single ZRD						
	ZRD 42 KCE	3,5	9,5	3,2	166	468	31
	ZRD 48 KCE	4,0	10,4	3,2	166	484	33
	ZRD 61 KCE	5,0	12,4	3,0	186	500	38
U	ZRD 72 KCE	6,0	15,6	3,0	186	500	40
R407	ZRD 81 KCE	6,5	18,0	3,1	186	500	41
₹	ZRD 94 KCE	7,5	21,0	3,3	232	495	58
_	ZRD 125 KCE	10,0	27,7	3,3	232	552	62
	Tandem ZRDT (2) - Tandem Uneven ZRDU (2)						
	ZRDT 96 KCE	ZRD48+ZR48	20,3				
	ZRDT 12 MCE	ZRD61+ZR61	24,6				
	ZRDU 13MCE	ZRD72+ZR61	27,7				
	ZRDT 14 MCE	ZRD72+ZR72	30,1				
	ZRDT 16 MCE	ZRD81+ZR81	34,4				

Модели для систем кондиционирования

3 модели компрессоров **с плавным регулированием** холодопроизводительности для **R410A**

	Модель	Номинальная мощность привода, л.с.	Холодопроиз- водител- ность (1,00%) кВт	Электропитание, В / Фаз. / Гц	Версия для / тандема	
	Single ZPD					
_	ZPD 61 KCE	5,0	13,2	400/3/50 & 230/1/50	400/3/50 Only	
0A	ZPD 72 KCE	6,0	15,3	400/3/50	Yes	
R41	ZPD 83 KCE	6,5	17,7	400/3/30	ies	
2	Tandem ZPDT (2) - Tandem Uneve	en ZPDU ⁽²⁾			
	ZPDT 12 MCE	ZPD61+ZP61	25,7			
	ZPDU 13MCE	ZPD72+ZP61	28,0			
	ZPDT 14 MCE	ZPD72+ZP72	30,3			
	ZPDT 16 MCE	ZPD83+ZP83	35,4			

- Сборка тандемов не планируется
- Документация на тандемы доступна по запросу

Компрессорно – конденсаторные агрегаты

Однокомпрессорные агрегаты:

MC-M8-ZBD30KE MC-M9-ZBD45KE

Двухкомпрессорные агрегаты:

MC-V6-ZBD60KE

MC-V6-ZBD90KE

Агрегаты с одиночным компрессором. Комплектация.

Жидкостная линия

с фильтром и

индикаторным стеклом

<u>Регулятор скорости</u> ALCO FSP150

Компрессор Digital Scroll

с соленоидным вентилем

Удлиненная линия

всасывания

На одной стороне

с жидкостной линией

Pеле ALCO

высокозо/ низкозо

давления

Полностью укомплектованный

электрический щит

С контроллером ЕС2-552

Датчик давления РТ4

На всасывание и нагнетание

(на ресивере)

Агрегаты-тандемы. Комплектация.

Отделитель масла

Жидкостная линия с фильтром и индикаторным стеклом

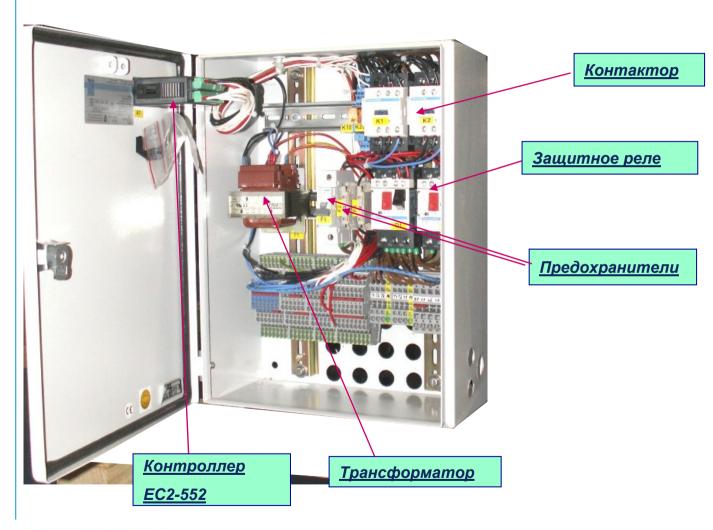
Регулятор скорости вращения ALCO FSP150

> Полностью укомплектованный с контроллером ЕС2-552

Датчик давления РТ4 на всасывание и нагнетание (на ресивере)

электрический щит

Удлиненная линия всасывания


Компрессор Digital Scroll С соленоидным вентилем

Реле низкого давления ALCO

Copeland

Электрический щит. Комплектация.

Агрегаты серии МС

Агрегаты "МС"

	MC-M8-ZB30	MC-M8-ZBD30	MC-M9-ZB45	MC-M9-ZBD45	MC-V6-ZBD60	MC-V6-ZBD90
Компрессор	ZB30KCE-TFD	ZBD30KCE-TFD	ZB45KCE-TFD	ZBD45KCE-TFD	ZB30KCE-TFD ZBD30KCE-TFD	ZB45KCE-TFD ZBD45KCE-TFD
Конденсатор	M8	M8	M9	M9	V6	V6
Вентилятор	271	271	611	611	2 x 611	2 x 611
Ресивер	7.5 л.	11.5 л.	7.5 л.	11.5 л.	14 л.	14 л.
Эл.щит.	клеммник	IP54	клеммник	IP54	IP54	IP54
- защ.реле						
- контактор						
- предохранитель						
Контроллер ЕС2						
Жидкостная линия	Доп.оборуд.		Доп.оборуд.			
Удлин.всас.линия	Доп.оборуд.		Доп.оборуд.			
Реле выс./низк.давл.	PS2	PS2	PS2	PS2	PS1 +PS3	PS1 +PS3
Рег.скорости вращ.	Доп.оборуд.		Доп.оборуд.			
Маслоотделитель						
Рубильник		Доп.оборуд.		Доп.оборуд.	Доп.оборуд.	Доп.оборуд.

Агрегаты Eazycool

Однокомпрессорные агрегаты:

OMQ-30**D**

OMQ-45D

Двухкомпрессорные агрегаты:

OMTQ-60D

OMTQ-90D

R404A

FAQs 1

- Изменился ли диапазон производительности компрессора Digital и стандартного?
 - Да. Возможна корректировка в области высоких температур кипения при низкой конденсации. Для нормальной работы (уплотнения) спирального блока необходимо обеспечить разность давлений 4,5 бар.
- Процесс циркуляции масла в системе со стандартным компрессором и Digital одинаков?
 - Hem. На холостом ходу Digital нет циркуляции масла. При работе Digital обеспечивает скорость движения газа и масла как стандартный компрессор.

FAQs 2

- Как масло возвращается при 10% нагрузке? Что происходит на длинных вертикальных участках при 10% нагрузке, масло будет возвращаться?
 - На горизонтальных участках трубопроводах длиной до 100м.
 и на вертикальных участках до 15м. не было замечено никаких изменений режима возврата масла в режиме нагрузки. На холостом ходу нет никакого уноса масла в систему.
- Можно ли установить Digital Scroll в уже существующую систему? Что необходимо?
 - Вы должны установить алгоритм управления компрессором Digital.

FAQs 3

- Уровень шума компрессора на холостом ходу по сравнению с инвертором?
 - Разница между уровнем шума на холостом ходу и при работе составляет в среднем 2 Дб.
- Какова функция нагнетательного термостата на Digital?
 - Термостат защищает компрессор от перегрева (утечка хладагента, блокирование конденсатора).
- Термостат установлен на нагнетательном трубопроводе или на компрессоре?
 - Встроен в верхнюю часть кожуха на компрессорах ZR61/72/81

