

Техническая информация

Документ №: A3.5.010/E 2 Взамен: A3.5.010/E 1

Дата: 22.09.2003

Термо®-расширительные вентили ALCO Controls серии TX2 / TX3 предназначены для систем кондиционирования воздуха, тепловых насосов и коммерческих холодильных установок. Вентили серии TX2 / TX3 идеально соответствуют требованиям этих систем, соединяя компактный и герметичный дизайн с точным и стабильным управлением в широких диапазонах температур кипения и нагрузки.

Характеристики

- Компактный дизайн
- Герметичная конструкция
- Девять типоразмеров до 21 кВт (R22)
- Соединения «под пайку» с прямоточной конфигурацией
- Силовой элемент из коррозионностойкой нержавеющей стали
- Диафрагма большого диаметра обеспечивает плавное и стабильное управляющее действие вентиля
- Внутреннее или внешнее выравнивание
- ТХЗ имеет внешнее регулирование перегрева
- ТХ2 имеет неизменяемую заводскую настройку перегрева
- Исполнение с встроенным обратным клапаном позволяет в системе теплового насоса не устанавливать внешний обратный клапан (только TX2)

Дополнительно

- При минимальном объёме заказа 100 шт. одной модели (только TX2), возможна поставка вентилей с фиксированными заводскими настройками отличными от стандартных, в соответствии с требованиями заказчика
- При минимальном объёме заказа 100 шт. одной модели (только TX2) возможна поставка вентилей с функцией перепуска (уравнивания) давления
- Метрические размеры соединений

Принцип работы

ТРВ регулируют перегрев хладагента на выходе из испарителя. Они выполняют функцию дросселя между сторонами низкого и высокого давления в холодильных системах и обеспечивают соответствие между скоростью истечения хладагента и скоростью испарения жидкости в испарителе. Таким образом, поверхность испарителя может использоваться полностью, а жидкость при этом в компрессор не поступает.

В условиях, когда действительный перегрев превышает уставку, ТРВ пропускает в испаритель больше жидкого хладагента. И, соответственно, вентиль уменьшает проток хладагента при фактическом перегреве ниже заданного значения.

Описание способов заправки термобаллона

Рабочий диапазон ТРВ зависит от типа заправки термобаллона.

Заправка жидкостью

Функционирование TPB с жидкостной заправкой определяется изменениями температуры термобаллона и не зависит от окружающих условий. Они отличаются хорошей реакцией и делают управление системой более устойчивым. В случае заполнения термобаллона жидкостью функция МОР не используется.

TX3

Максимальная температура термобаллона ограничена и не должна превышать значений указанных в нижеспелующей таблице:

	провышать значении	ykasambix b i	илсолодующой таолицо.
•		Максималь	ьна температура термобаллона
	Хладагент	TX2 / TX3	TX2 со встроенным обратным клапаном
	R134a	88°C	-
	R22 / R407C	71°C	120°C
	R404A / R507	66°C	-

Таблица 1: Данная таблица относится к максимальной температуре выкипания всей жидкости, когда термобаллон и корпус вентиля подвергаются воздействию одинаковой температуры.

Внимание: серия ТХ2 с внутренним обратным клапаном включает модели со специальной заправкой жидкостью для применения в тепловых насосах.

Заправка газом

Функционирование ТРВ с газовой заправкой будет определяться минимальной температурой какой-либо из частей ТРВ (термобаллона, капиллярной трубки или мембранного узла). Например, если термобаллон будет иметь максимальную температуру, то ТРВ будет работать нестабильно (возможны колебания давления и избыточный перегрев). В ТРВ АLCО ТХ2/ТХ3 с газовой заправкой всегда можно использовать функцию МОР. Равновесие в термобаллоне позволяет вентилю медленно открываться и быстро закрываться. Максимальная температура термобаллона 120°С.

Документ №: A3.5.010/E 2 Взамен: A3.5.010/E 1 Дата: 22.09.2003

МОР (Максимальное Рабочее Давление)

МОР действует подобно регулятору давления в картере. Ограничивается максимальное давление кипения для защиты компрессора от перегрузок.

Выбор МОР должен быть в пределах диапазона максимально разрешенного давления всасывания компрессора и должен быть приблизительно на 3К выше температуры кипения.

MOP	E	Зерхний г	редел те	мператур	ы кипени	Я
(бар)	R134a	R22	R407C	R404A	R410A	R507
2.3				-18°C		-18.7°C
3.3	+11°C					
6.4		+13°C	+14.5°C			
10.9					+13°C	

Таблица 2: Все давления – избыточные давления, замеренные по манометру.

Практический совет:

Регулировки перегрева влияют на МОР:

Увеличение перегрева дает уменьшение МОР Уменьшение перегрева дает увеличение МОР

Переохлаждение

Переохлаждение несколько увеличивает производительность холодильной системы и может быть учтено при выборе TPB через поправочный коэффициент $K_{\rm t}$.

Зависимость производительности от температуры кипения, температуры конденсации и переохлаждения учтена в поправочном коэффициенте K_t . Эти величины определяют соотношение жидкостной и паровой фазы хладагента после ТРВ. Процентное соотношение жидкости и пара после дросселирования зависит также от типа хладагента и других параметров системы.

Большое переохлаждение дает после дросселирования малое количество газа и позволяет использовать меньшее по размеру ТРВ. Эти условия не учитываются поправочным коэффициентом K_t . Более того, малое количество испарившегося газа приводит к уменьшению производительности испарителя, и в результате производительность ТРВ и испарителя могут существенно различаться.

Этот эффект может быть использован в процессе выбора компонентов холодильной системы. В случае, когда переохлаждение превышает 15К, необходима соответствующая корректировка (K_t , $K_{\Delta p}$) типоразмеров компонентов системы. Инженеры компании «ALCO CONTROLS» будут рады помочь вам в выборе TPB.

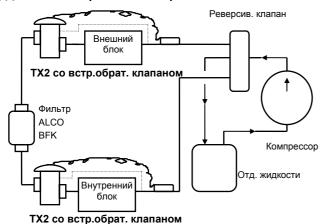
Функция перепуска (уравнивания) давления

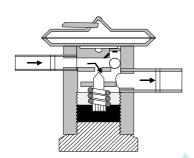
В системах с некоторыми типами однофазных компрессоров с конденсаторными двигателями с постоянно включенными конденсаторами (небольшие ротационные компрессоры) для того чтобы двигатель компрессора мог запускаться при минимальном моменте вращения необходимо обеспечить выравнивание между высокой и низкой сторонами давления во время стоянки.

Требуемый размер перепускного отверстия для конкретной системы является функцией объемов высокой и низкой сторон, разницы давлений на вентиле при закрытии, требуемого времени уравнивания и количества заправленного хладагента.

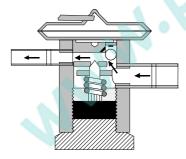
Из-за множества переменных, для определения правильного размера перепускного отверстия каждое применение должно пройти испытания. Необходимо помнить, что размер перепускного отверстия добавляется к полной эффективной площади порта ТРВ и может влиять на размер вентиля. Заключительный выбор размера перепускного отверстия должен быть сделан только после всесторонних испытаний.

9.com



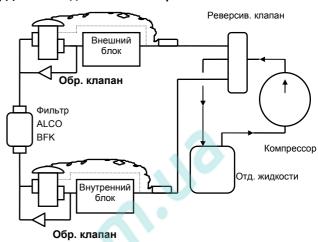

Документ №: Взамен: Дата: A3.5.010/E 2 A3.5.010/E 1 22.09.2003

Применение в тепловых насосах


Существует несколько вариантов использования ТРВ в тепловом насосе:

1) Два ТРВ с встроенными обратными клапанами

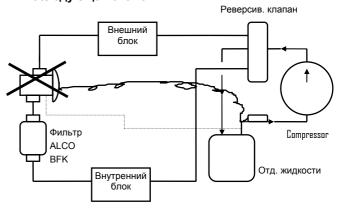
ТХ2 со встроенным обратным клапаном при нормальной работе



TX2 со встроенным обратным клапаном при работе в обратном направлении

Данная система очень проста, благодаря использованию термо-расширительных вентилей со встроенными обратными клапанами (TX2).

TPB ALCO Controls серии TX2 с внутренним обратным клапаном и специальной заправкой жидкостью идеально подходят для применения в тепловых насосах.


2) Два ТРВ и два внешних обратных клапана

В данной системе используется два ТРВ и два обратных клапана. В этом случае заправка термобаллонов ТРВ должна быть способна противостоять высоким температурам обратного потока.

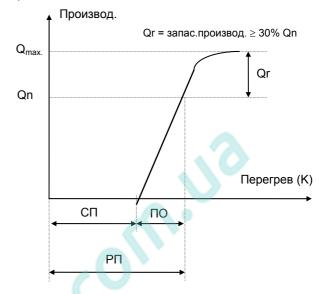
Термо-расширительные вентили с газовой заправкой не рекомендуется использовать в тепловых насосах с автоматическим переключением между режимами нагреванием и охлаждения из-за взаимного воздействия ТРВ и окружающей среды после изменения направления потока

3) Вентили ТХ2 / ТХ3 не предназначены для работы в двухпоточных контурах, соответствующих нижеследующей схеме

При создании систем, требующих применения ТРВ для работы в двухпоточном режиме, пожалуйста, обращайтесь в ALCO Controls.

Документ №: Взамен: Дата: A3.5.010/E 2 A3.5.010/E 1 22.09.2003

Перегрев


Заводская настройка ТХ2 / ТХ3 выполнена таким образом, что шток клапана под воздействием мембраны сразу начинает перемещаться от седла. Приращение перегрева необходимое для получения состояния готовности штока двигаться называют статическим перегревом (СП). Увеличение перегрева сверх статического (заводская настройка) необходимо для дальнейшего перемещения штока и открытия клапана до номинальной производительности. Этот дополнительный перегрев известен как градиент или перегрев открытия (ПО).

Рабочий перегрев (РП), который может быть непосредственно измерен на месте, является суммой статического перегрева и перегрева открытия.

Перегрев открытия TPB изменяется, если подобранный вентиль работает на более высокой или низкой мощности, чем его номинальная производительность. Настоятельно рекомендуется выбирать вентиль в соответствии с номинальной производительностью. Использование вентиля с запасом производительности (меньшей номинальной производительности) ведет к увеличению перегрева открытия и соответственно времени его реагирования при пуске установки, или после оттайки.

Выбор для системы вентиля большего размера, чем требуется, может привести к уменьшению перегрева открытия и/или колебательному режиму работы TPB.

TPB ALCO Controls поставляются с оптимально установленным на заводе перегревом. Эти настройки можно менять, только если это абсолютно необходимо. Перенастройка должна производиться только при минимально возможной температуре кипения (только TX3).

Настройка статического перегрева

Стандартные настройки перегрева (ТХ2 / ТХ3)

Заправка	Хладагент		Условия настр	ойки	Настройка	Заданный
		Давление на входе в вентиль (бар)	Температура кипения °С	Температура термобаллона °С	Номинальный статический перегрев (СП), К	Номинальный перегрев открытия (ПО), К *)
	R 134a	7.6				2.7
	R 22		-3.3		3.3	3.0
Жидкость	R 407C					
(Без МОР)	R 404A	8.6	-4.4		4.4	2.7
	R 507		-5.3	±0	5.3	
Жидкость	R 22					
MOP 3.3	R 134a	7.6	-3.3		3.3	3.0
MOP 6.4	R 22	100				
	R 407C	8.6				
MOP 2.3	R 404A		-22.2	-17.8	4.4	4.0
	R 507		-23.1	-17.8	5.3	

^{*)} Заданные перегревы открытия действительны, если подобранный вентиль имеет производительность равную производительности системы при данных условиях.

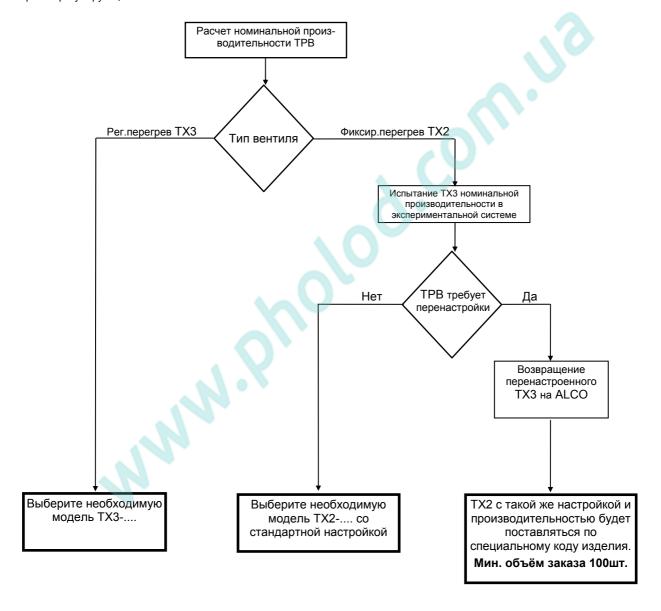
Внимание: Все давления – избыточные давления, замеренные по манометру.

Документ №: Взамен: Дата:

A3.5.010/E 2 A3.5.010/E 1 22.09.2003

Подбор и процедура заказа

При использовании TPB TX2 с фиксированным перегревом важно первоначально заказать вентиль с правильной заводской настройкой перегрева. Для определения оптимальной настройки рекомендуется перед заказом TX2 использовать в качестве опытной модели для лабораторных испытаний регулируемый вентиль TX3.


Стандартные заводские настройки соответствуют требованиям большинства применений. Вентиль ТХЗ должен быть установлен без изменения настройки. Если перенастройка оказывается необходимой (только в исключительных случаях, после определенного периода работы), она может быть выполнена поворотом регулирующего винта.

Пожалуйста, обратите внимание, что перенастройка приведет к изменению статического перегрева, перемещению точки МОР (для TPB с MOP) и градиента (перегрева открытия) вентиля.

Убедитесь, что перенастройка производиться при минимально возможной температуре кипения.

После завершения всех испытаний, перенастроенный вентиль должен быть отправлен на ALCO для определения его перегрева. Вентили TX2 с фиксированным перегревом будут настроены в соответствии с уставкой возвращенного TX3.

Инженеры компании «ALCO CONTROLS» будут рады помочь вам.

Документ №: A3.5.010/E 2 Взамен: A3.5.010/E 1 Дата: 22.09.2003

Определение размера ТРВ

Для правильного подбора ТРВ необходимы следующие исходные данные:

- Холодопроизводительность (Q₀)
- Перепад давлений на ТРВ (Др)
- Температура / давление кипения
- Самая низкая температура / давление конденсации
- Температура жидкости на входе в ТРВ
- Тип хладагента
- Тип вентиля

Для расчета номинальной производительности используется следующая формула:

> Холодопроиводительность $x K_{\Delta p} x K_t =$ Номинальная производительность ТРВ

- Поправочный коэффициент K_t выбирается в соответствии с хладагентом, температурой температурой кипения из таблиц на стр. 11-13.
- Определяется перепад давления на ТРВ с использованием данных давления конденсации, за вычетом давления кипения и всех возможных потерь по давлению. Поправочный коэффициент $K_{\Delta p}$ выбирается из таблиц на стр. 11-13.

Пример 1

Подобрать вентиль для следующих условий:	
• Хладагент	R134a
• Холодопроизводительность системы	6.0 кВ ⁻
• Температура кипения	-10°C
• Самая низкая температура конденсации	+25°C
• Температура жидкости	+20°C
• Вентиль с изменяемой настройкой перегрева	

Расчет:

- Теоретический перепад давления: Самое низкое давление конденсации Pc = 5.65 бар при +25°C и давление кипения P_0 = 1.01 бар при -10°C Перепад давления: $Pc - P_0 = 5.65 - 1.01 = 4.64$ бар
- Потери давления:

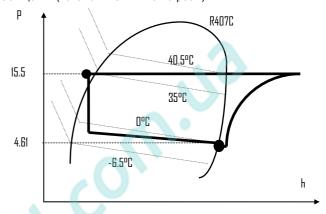
В «пауке» испарителя = 1.0 бар Потери в трубопроводе, соленоиде, фильтре-осушителе, смотровом стекле, фитингах и др.=0.84 бар Общие потери давления = 1 + 0.84 = 1.84 бар

- Эффективный перепад давления на вентиле: 4.64 - 1.84 = 2.8 бар
- Поправочные коэффициенты:

Поправочный коэффициент $K_{\Delta p}$ для перепада давления в 2.8

Поправочный коэффициент К, для температур жидкости и кипения из таблицы на странице 13 для R134a при +20°C / - $10^{\circ}CK_{1} = 0.88$

Рассчитываем номинальную производительность по формуле: $Q_0 \times K_{\Delta p} \times K_t = Qn$ $6.0 \times 1.5 \times 0.88 = 7.92 \text{ kBt}.$


Выбран вентиль ТХ3-М26 с номинальной производительностью 8.3 кВт.

Выбираем ТРВ в таблице на странице 7.

Определение размера ТРВ для систем с хладагентом R407C

В отличие от азеотропных хладагентов (например R22, R134a), где изменение состояния фаз происходит при постоянных температуре и давлении, кипение и конденсация зеотропного хладагента R407C, представляется в виде скольжения (т.е., давление и температура при фазовом переходе изменяются в определенном промежутке) в испарителях и конденсаторах.

Для определения нужного типа ТРВ, давление кипения / конденсации должно определяться при температурах насыщения (начало кипения / точка росы).

Пример 2

- Холодопроизводительность системы, R407C 13 кВт
- 0°C Температура кипения (точка росы)
- Самая низкая темп. конденсации (обр. пузырьков) +35°С
- Температура жидкости +34°C
- Вентиль с МОР и неизменяемой настройкой перегрева
- Теоретический перепад давления: Перепад давления: $Pc - P_0 = 15.5 - 4.61 = 10.89$ бар
- Потери давления:

В «пауке» испарителя = 0.3 бар Потери в трубопроводе, соленоиде, фильтре-осушителе, смотровом стекле, фитингах и др. = 1.2 бар Общие потери давления = 0.3 + 1.2 = 1.5 бар

- Эффективный перепад давления на вентиле: 10.89 - 1.5 = 9.39 бар
- Поправочные коэффициенты:

Поправочный коэффициент К др для перепада давления в 9.39 бар из таблицы на странице 11 для R 407C $\Delta p = 9.39$

Поправочный коэффициент К, для температур жидкости и кипения из таблицы на странице 11 для R407C при +34°C / 0°C $K_1 = 0.98$

Рассчитываем номинальную производительность по формуле: $Q_0 \times K_{\Delta p} \times K_t = Qn$ $13 \times 1.09 \times 0.98 = 13.88 \text{ kBt}.$

Выбираем ТРВ в таблице на странице 7.

Выбран вентиль TX2-N37 с номинальной производительностью 14.2 кВт.

Документ №: Взамен: Дата: A3.5.010/E 2 A3.5.010/E 1 22.09.2003

Таблица подбора

Хладагент	Номин.		Измен	яемые			Неизме	няемые		Размер	соединения
	производ	(стандартные	е настройкі	1	C-	тандартны	е настройк	И		
	Qn	Без	MOP	MO	P *)	Без М	МОР	MOI	P *)		
	кВт	Модель	№ заказа	Модель	№ заказа	Модель	№ заказа	Модель	№ заказа	Выравни- вание	Вход х Выход
	0,6	TX3-M01	801 765	TX3-M11	801 777	TX2-M01	801 789	TX2-M11	801 801	Внутрен.	1/4" x 3/8"
	1,8	TX3-M02	801 766	TX3-M12	801 778	TX2-M02	801 790	TX2-M12	801 802	Внутрен.	1/4" x 3/8"
	2,8	TX3-M03	801 767	TX3-M13	801 779	TX2-M03	801 791	TX2-M13	801 803	Внутрен.	1/4" x 3/8"
	4,0	TX3-M04	801 768	TX3-M14	801 780	TX2-M04	801 792	TX2-M14	801 804	Внутрен.	3/8" x 1/2"
	1,8	TX3-M22	801 769	TX3-M32	801 781	TX2-M22	801 793	TX2-M32	801 805	Внеш. 1/4"	1/4" x 3/8"
R 134a	2,8	TX3-M23	801 770	TX3-M33	801 782	TX2-M23	801 794	TX2-M33	801 806	Внеш. 1/4"	1/4" x 3/8"
	4,0	TX3-M24	801 771	TX3-M34	801 783	TX2-M24	801 795	TX2-M34	801 807	Внеш. 1/4"	3/8" x 1/2"
	6,1	TX3-M25	801 772	TX3-M35	801 784	TX2-M25	801 796	TX2-M35	801 808	Внеш. 1/4"	3/8" x 1/2"
	8,3	TX3-M26	801 773	TX3-M36	801 785	TX2-M26	801 797	TX2-M36	801 809	Внеш. 1/4"	3/8" x 1/2"
	10,2	TX3-M27	801 774	TX3-M37	801 786	TX2-M27	801 798	TX2-M37	801 810	Внеш. 1/4"	1/2" x 5/8"
	12,1	TX3-M28	801 775	TX3-M38	801 787	TX2-M28	801 799	TX2-M38	801 811	Внеш. 1/4"	1/2" x 5/8"
	16,5	TX3-M29	801 776	TX3-M39	801 788	TX2-M29	801 800	TX2-M39	801 812	Внеш. 1/4"	1/2" x 5/8"
	0,8	TX3-H01	801 726	TX3-H11	801 730	TX2-H01	801 687	TX2-H11	801 691	Внутрен.	1/4" x 3/8"
	2,3	TX3-H02	801 727	TX3-H12	801 731	TX2-H02	801 688	TX2-H12	801 692	Внутрен.	1/4" x 3/8"
	3,6	TX3-H03	801 728	TX3-H13	801 732	TX2-H03	801 689	TX2-H13	801 693	Внутрен.	1/4" x 3/8"
	5,2	TX3-H04	801 729	TX3-H14	801 733	TX2-H04	801 690	TX2-H14	801 694	Внутрен.	3/8" x 1/2"
	0,8	TX3-H21	801 738	TX3-H31	801 747	TX2-H21	801 699	TX2-H31	801 708	Внеш. 1/4"	1/4" x 3/8"
	2,3	TX3-H22	801 739	TX3-H32	801 748	TX2-H22	801 700	TX2-H32	801 709	Внеш. 1/4"	1/4" x 3/8"
R 22	3,6	TX3-H23	801 740	TX3-H33	801 749	TX2-H23	801 701	TX2-H33	801 710	Внеш. 1/4"	1/4" x 3/8"
	5,2	TX3-H24	801 741	TX3-H34	801 750	TX2-H24	801 702	TX2-H34	801 711	Внеш. 1/4"	3/8" x 1/2"
	7,8	TX3-H25	801 742	TX3-H35	801 751	TX2-H25	801 703	TX2-H35	801 712	Внеш. 1/4"	3/8" x 1/2"
	10,7	TX3-H26	801 743	TX3-H36	801 752	TX2-H26	801 704	TX2-H36	801 713	Внеш. 1/4"	3/8" x 1/2"
	13,1	TX3-H27	801 744	TX3-H37	801 753	TX2-H27	801 705	TX2-H37	801 714	Внеш. 1/4"	1/2" x 5/8"
	15,6	TX3-H28	801 745	TX3-H38	801 754	TX2-H28	801 706	TX2-H38	801 715	Внеш. 1/4"	1/2" x 5/8"
	21,3	TX3-H29	801 746	TX3-H39	801 755	TX2-H29	801 707	TX2-H39	801 716	Внеш. 1/4"	1/2" x 5/8"
	0,9	TX3-N01	801 813	TX3-N11	801 826	TX2-N01	801 839	TX2-N11	801 852	Внутрен.	1/4" x 3/8"
	2,5	TX3-N02	801 814	TX3-N12	801 827	TX2-N02	801 840	TX2-N12	801 853	Внутрен.	1/4" x 3/8"
	3,9	TX3-N03	801 815	TX3-N13	801 828	TX2-N03	801 841	TX2-N13	801 854	Внутрен.	1/4" x 3/8"
	5,6	TX3-N04	801 816	TX3-N14	801 829	TX2-N04	801 842	TX2-N14	801 855	Внутрен.	3/8" x 1/2"
	0,9	TX3-N21	801 817	TX3-N31	801 830	TX2-N21	801 843	TX2-N31	801 856	Внеш. 1/4"	1/4" x 3/8"
	2,5	TX3-N22	801 818	TX3-N32	801 831	TX2-N22	801 844	TX2-N32	801 857	Внеш. 1/4"	1/4" x 3/8"
R 407C	3,9	TX3-N23	801 819	TX3-N33	801 832	TX2-N23	801 845	TX2-N33	801 858	Внеш. 1/4"	1/4" x 3/8"
	5,6	TX3-N24	801 820	TX3-N34	801 833	TX2-N24	801 846	TX2-N34	801 859	Внеш. 1/4"	3/8" x 1/2"
	8,4	TX3-N25	801 821	TX3-N35	801 834	TX2-N25	801 847	TX2-N35	801 860	Внеш. 1/4"	3/8" x 1/2"
	11,6	TX3-N26	801 822	TX3-N36	801 835	TX2-N26	801 848	TX2-N36	801 861	Внеш. 1/4"	3/8" x 1/2"
	14,2	TX3-N27	801 823	TX3-N37	801 836	TX2-N27	801 849	TX2-N37	801 862	Внеш. 1/4"	1/2" x 5/8"
	16,9	TX3-N28	801 824	TX3-N38	801 837	TX2-N28	801 850	TX2-N38	801 863	Внеш. 1/4"	1/2" x 5/8"
	23,0	TX3-N29	801 825	TX3-N39	801 838	TX2-N29	801 851	TX2-N39	801 864	Внеш. 1/4"	1/2" x 5/8"

Номинальная производительность при условиях: температура конденсации +38°C, температура кипения +4°C и переохлаждение жидкости 1 К на входе в ТРВ. Подбор вентилей для других условий на стр. 6, 11 и 13.

^{*)} значения МОР см. в таблице 2 на стр. 2.

Документ №: A3.5.010/E 2 Взамен: A3.5.010/E 1 Дата: 22.09.2003

Таблица подбора

Хладагент	Номин. производ.	C.		яемые е настройкі	И	C.		няемые е настройк	И	Размер с	оединения
	Qn	Без М	МОР	MO	P *)	Без Г	МОР	МО	P *)		
	кВт	Модель	№ заказа	Модель	№ заказа	Модель	№ заказа	Модель	№ заказа	Выравни- вание	Вход х Выход
	0,6	TX3-S21	801 865	TX3-S31	801 874	TX2-S21	801 883	TX2-S31	801 892	Внеш. 1/4"	1/4" x 3/8"
	1,6	TX3-S22	801 866	TX3-S32	801 875	TX2-S22	801 884	TX2-S32	801 893	Внеш. 1/4"	1/4" x 3/8"
R 404A	2,5	TX3-S23	801 867	TX3-S33	801 876	TX2-S23	801 885	TX2-S33	801 894	Внеш. 1/4"	1/4" x 3/8"
R 507	3,7	TX3-S24	801 868	TX3-S34	801 877	TX2-S24	801 886	TX2-S34	801 895	Внеш. 1/4"	3/8" x 1/2"
	5,5	TX3-S25	801 869	TX3-S35	801 878	TX2-S25	801 887	TX2-S35	801 896	Внеш. 1/4"	3/8" x 1/2"
	7,6	TX3-S26	801 870	TX3-S36	801 879	TX2-S26	801 888	TX2-S36	801 897	Внеш. 1/4"	3/8" x 1/2"
	9,2	TX3-S27	801 871	TX3-S37	801 880	TX2-S27	801 889	TX2-S37	801 898	Внеш. 1/4"	1/2" x 5/8"
	11,0	TX3-S28	801 872	TX3-S38	801 881	TX2-S28	801 890	TX2-S38	801 899	Внеш. 1/4"	1/2" x 5/8"
	15,0	TX3-S29	801 873	TX3-S39	801 882	TX2-S29	801 891	TX2-S39	801 900	Внеш. 1/4"	1/2" x 5/8"
	2,8			TX3-Z32	801 942					Внеш. 1/4"	1/4" x 3/8"
	4,3			TX3-Z33	801 943					Внеш. 1/4"	1/4" x 3/8"
	6,3			TX3-Z34	801 944				•	Внеш. 1/4"	3/8" x 1/2"
R 410A	9,4			TX3-Z35	801 945					Внеш. 1/4"	3/8" x 1/2"
	12,9			TX3-Z36	801 946	4				Внеш. 1/4"	3/8" x 1/2"
	15,8			TX3-Z37	801 947		A .			Внеш. 1/4"	1/2" x 5/8"
	18,8			TX3-Z38	801 948		100			Внеш. 1/4"	1/2" x 5/8"

Номинальная производительность при условиях: температура конденсации +38°C, температура кипения +4°C и переохлаждение жидкости 1 К на входе в ТРВ. Подбор вентилей для других условий на стр. 6 и 12.

Таблица подбора для применений в тепловых насосах

Хладагент	Номин. производ.	обратн	ым клапан й жидкость	ные с встроюм и специа ю для прим к насосах	альной	обратн	ым клапан і жидкость	емые с встроенным ом и специальной ю для применения в к насосах	Размер с	соединения
	Qn	Без М	MOP			Без М	ЛОР			
	кВт	Модель	№ заказа	1.		Модель	№ заказа		Выравни- вание	Вход х Выход
	0,8	TX3-H61	801 756			TX2-H61	801 717		Внеш. 1/4"	1/4" x 3/8"
	2,3	TX3-H62	801 757			TX2-H62	801 718		Внеш. 1/4"	1/4" x 3/8"
	3,6	TX3-H63	801 758			TX2-H63	801 719		Внеш. 1/4"	1/4" x 3/8"
	5,2	TX3-H64	801 759			TX2-H64	801 720		Внеш. 1/4"	3/8" x 1/2"
R 22	7,8	TX3-H65	801 760			TX2-H65	801 721		Внеш. 1/4"	3/8" x 1/2"
	10,7	TX3-H66	801 761			TX2-H66	801 722		Внеш. 1/4"	3/8" x 1/2"
			TX2-H67	801 723		Внеш. 1/4"	1/2" x 5/8"			
	15,6 TX3-H68 801 763					TX2-H68	801 724		Внеш. 1/4"	1/2" x 5/8"
	21,3	TX3-H69	801 764			TX2-H69	801 725		Внеш. 1/4"	1/2" x 5/8"

Номинальная производительность при условиях: температура конденсации +38°C, температура кипения +4°C и переохлаждение жидкости 1 К на входе в ТРВ. Подбор вентилей для других условий на стр. 6 и 11.

^{*)} значения МОР см. в таблице 2 на стр. 2.

Документ №: Взамен: Дата: A3.5.010/E 2 A3.5.010/E 1 22.09.2003

Определение падения давления на внутреннем обратном клапане

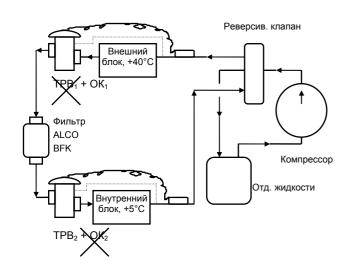
		Γ								о клап 22, кВ [.]		N
Падение	Температура				Тем	перат	ура жи	дкост	и°C			
давления (бар)	кипения °C	10	15	20	25	30	35	40	45	50	55	60
	-20	8,6	8,2	7,8	7,5	7,2	6,8	6,5	6,2	5,8	5,4	5,1
0,2	-10	8,7	8,4	8,1	7,7	7,3	7,0	6,7	6,3	5,9	5,6	5,3
	0	8,9	8,6	8,2	7,9	7,5	7,2	6,8	6,5	6,1	5,8	5,4
	10	9,0	8,7	8,4	8,0	7,6	7,3	7,0	6,6	6,3	5,9	5,6
	-20	12,8	12,2	11,7	11,2	10,7	10,2	9,8	9,2	8,7	8,2	7,6
0,4	-10	13,0	12,5	12,1	11,6	11,0	10,5	10,0	9,5	8,9	8,4	7,9
	0	13,3	12,8	12,2	11,8	11,2	10,7	10,2	9,8	9,2	8,6	8,1
	10	13,5	13,0	12,5	12,0	11,4	11,0	10,4	9,9	9,4	8,8	8,4
	-20	17,1	16,3	15,6	14,9	14,3	13,6	13,0	12,3	11,6	10,9	10,2
0,6	-10	17,3	16,7	16,1	15,4	14,6	14,0	13,4	12,6	11,9	11,2	10,6
	0	17,8	17,1	16,3	15,8	14,9	14,3	13,6	13,0	12,2	11,5	10,8
	10	18,0	17,3	16,7	16,0	15,3	14,6	13,9	13,2	12,5	11,8	11,1
	-20	18,8	17,9	17,1	16,4	15,7	15,0	14,3	13,5	12,7	11,9	11,2
0,8	-10	19,0	18,3	17,7	16,9	16,0	15,4	14,7	13,9	13,1	12,3	11,6
	0	19,5	18,8	17,9	17,3	16,4	15,7	15,0	14,3	13,4	12,6	11,8
	10	19,7	19,0	18,3	17,5	16,7	16,0	15,2	14,5	13,8	12,9	12,2
	-20	21,4	20,4	19,5	18,7	17,9	17,0	16,3	15,4	14,5	13,6	12,7
1	-10	21,7	20,9	20,2	19,3	18,3	17,6	16,7	15,8	14,9	14,0	13,2
	0	22,2	21,4	20,4	19,7	18,7	17,9	17,0	16,3	15,3	14,4	13,5
	10	22,5	21,7	20,9	19,9	19,1	18,3	17,4	16,6	15,7	14,7	13,9
	-20	23,5	22,4	21,5	20,5	19,7	18,7	17,9	16,9	16,0	15,0	14,0
1,2	-10	23,8	23,0	22,2	21,2	20,1	19,3	18,4	17,4	16,4	15,4	14,5
	0	24,4	23,5	22,4	21,7	20,5	19,7	18,7	17,9	16,8	15,8	14,9
	10	24,8	23,8	23,0	21,9	21,0	20,1	19,1	18,2	17,2	16,2	15,3
	-20	25,7	24,5	23,4	22,4	21,5	20,4	19,5	18,5	17,4	16,3	15,3
1,4	-10	26,0	25,1	24,2	23,1	21,9	21,1	20,1	19,0	17,8	16,8	15,8
	0	26,7	25,7	24,5	23,7	22,4	21,5	20,4	19,5	18,3	17,3	16,2
	10	27,0	26,0	25,1	23,9	22,9	21,9	20,9	19,9	18,8	17,7	16,7
	-20	27,3	26,0	24,9	23,8	22,9	21,7	20,7	19,6	18,5	17,4	16,2
1,6	-10	27,7	26,7	25,7	24,6	23,3	22,4	21,3	20,2	19,0	17,9	16,8
	0	28,4	27,3	26,0	25,2	23,8	22,9	21,7	20,7	19,5	18,4	17,2
	10	28,7	27,7	26,7	25,5	24,3	23,3	22,2	21,1	20,0	18,8	17,8
	-20	28,8	27,4	26,2	25,1	24,1	22,9	21,9	20,7	19,5	18,3	17,1
1,8	-10	29,1	28,1	27,1	25,9	24,6	23,6	22,5	21,3	20,0	18,9	17,7
	0	29,9	28,8	27,4	26,5	25,1	24,1	22,9	21,9	20,5	19,3	18,2
	10	30,3	29,1	28,1	26,8	25,7	24,6	23,4	22,3	21,1	19,8	18,7

- + Выберите температуру жидкости.
- + Перемещаясь по вертикали, найдите производительность равную производительности системы.
- + По горизонтали найдите соответствующее падение давления.

Документ №: A3.5.010/E 2 Взамен: A3.5.010/E 1 Дата: 22.09.2003

Пример 3 для применения в тепловых насосах

Тепловой насос для следующих условий:


Режим охлаждения

• Холодопроизводительность, R 22 9,8 кВт

• Температура конденсации +40°C

• Температура кипения +5°C

• TPB₂ с встроенным обратным клапаном (OK₂)

- 1. Определяем падение давления на обратном клапане OK_1 в таблице на стр. 9 при +40°C / +5°C $OK_1 \le 0.4$ бар
- 2. Теоретический перепад давления: Давление конденсации Pc = 14.27 бар при $+40^{\circ}C$ Давление кипения $P_0 = 4.84$ бар при $+5^{\circ}C$ Перепад давления: $Pc P_0 = 14.27 4.84 = 9.43$ бар
- Потери давления:
 На обратном клапане ОК₁ = 0.4 бар
 Потери в трубопроводе, соленоиде, фильтре-осушителе, смотровом стекле, фитингах и др. = 0.8 бар
 Общие потери давления = 0.4 + 0.8 = 1.2 бар
- 4. Эффективный перепад давления на вентиле: 9.43 1.2 = 8.23 бар
- 5. Поправочные коэффициенты:

Поправочный коэффициент $K_{\Delta p}$ для перепада давления в 8.23 бар из таблицы на странице 11 для R22 Δp = 8.23

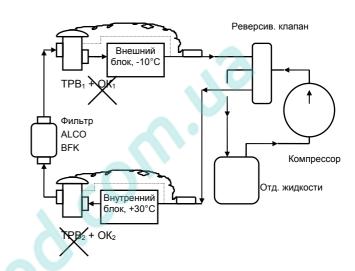
 $K_{\Delta P} = 1.04$

Поправочный коэффициент K_t для температур жидкости и кипения из таблицы на странице 11 для R22 при +40°C / +5°C K_t = 102

6. Рассчитываем номинальную производительность по формуле: $Q_0 \times K_{\Delta p} \times K_t = Qn$ 9.8 x 1.04 x 1.02 = 10.4 кВт

Выбираем ТРВ в таблице на странице 8.

Выбран вентиль ТХ2-Н66 с номинальной производительностью 10.7 кВт.


 $(TPB_2 + OK_2 = TX2-H66)$

Режим подогрева

• Тепловая производительность, R 22 5.8 кВт

Температура конденсации +30°CТемпература кипения -10°C

• TPB₁ с встроенным обратным клапаном (OK₁)

- . Определяем падение давления на обратном клапане OK $_2$ в таблице на стр. 9 при +30°C / -10°C OK $_2$ ≤ 0.2 бар
- 2. Теоретический перепад давления: Давление конденсации Pc = 10.88 бар при $+30^{\circ}C$ Давление кипения $P_0 = 2.55$ бар при $-10^{\circ}C$

Перепад давления: $Pc - P_0 = 10.88 - 2.55 = 8.33$ бар

3. Потери давления:

На обратном клапане $OK_2 = 0.2$ бар

Потери в трубопроводе, соленоиде, фильтре-осушителе, смотровом стекле, фитингах и др. = 0.8 бар

Общие потери давления = 0.2 + 0.8 = 1.0 бар

Эффективный перепад давления на вентиле:
 8.33 - 1.0 = 7.33 бар

5. Поправочные коэффициенты:

Поправочный коэффициент $K_{\Delta p}$ для перепада давления в 7.33 бар из таблицы на странице 11 для R22 $\Delta p = 7.33$

 $K_{\Delta P} = 1.11$

Поправочный коэффициент K_t для температур жидкости и кипения из таблицы на странице 11 для R22 при +30°C / -10°C

6. Рассчитываем номинальную производительность по формуле: $Q_0 \times K_{\Delta p} \times K_t = Qn$

5.8 x 1.11 x 0.99 = 6.37 кВт

Выбираем ТРВ в таблице на странице 8.

Выбран вентиль ТХ2-Н65 с номинальной производительностью 7.8 кВт.

 $(TPB_1 + OK_1 = TX2-H65)$

Документ №: Взамен: Дата:

A3.5.010/E 2 A3.5.010/E 1 22.09.2003

Тем. жидкости на						Поп	равоч	ный к	оэфф	ицие	нт К _t						Тем. жидкости на
входе в вентиль	R2	22					емпер										входе в вентиль
°C			+20	+15	+10	+5	0	-5	-10	-15	-20	-25	-30	-35	-40	-45	°C
+ 60			1,24	1,25	1,26	1,28	1,30	1,31	1,38	1,58	1,84	2,16	2,56	3,04	3,55	4,23	+ 60
+ 55			1,16	1,17	1,19	1,20	1,22	1,23	1,29	1,42	1,72	2,02	2,39	2,83	3,30	3,94	+ 55
+ 50			1,10	1,11	1,12	1,13	1,15	1,16	1,21	1,39	1,62	1,89	2,24	2,66	3,10	3,68	+ 50
+ 45			1,04	1,05	1,06	1,07	1,08	1,10	1,15	1,31	1,52	1,79	2,11	2,50	2,91	3,46	+ 45
+ 40			0,99	1,00	1,01	1,02	1,03	1,04	1,09	1,24	1,45	1,69	2,00	2,37	2,75	3,27	+ 40
+ 35			0,94	0,95	0,96	0,97	0,98	0,99	1,03	1,18	1,37	1,61	1,89	2,24	2,60	3,09	+ 35
+ 30			0,90	0,91	0,92	0,93	0,94	0,95	0,99	1,13	1,31	1,55	1,83	2,13	2,47	2,93	+ 30
+ 25			0,86	0,87	0,88	0,89	0,89	0,90	0,94	1,08	1,25	1,46	1,72	2,03	2,36	2,80	+ 25
+ 20			0,83	0,83	0,84	0,85	0,86	0,87	0,90	1,03	1,19	1,40	1,64	1,94	2,25	2,66	+ 20
+ 15				0,80	0,81	0,81	0,82	0,83	0,87	0,99	1,14	1,34	1,57	1,86	2,15	2,55	+ 15
+ 10					0,78	0,78	0,79	0,80	0,83	0,95	1,10	1,28	1,51	1,78	2,06	2,44	+ 10
+ 5						0,75	0,76	0,77	0,80	0,91	1,06	1,23	1,45	1,71	1,98	2,34	+ 5
0							0,73	0,74	0,77	0,88	1,02	1,19	1,39	1,65	1,90	2,25	0
- 5								0,71	0,74	0,85	0,98	1,14	1,34	1,58	1,83	2,17	- 5
- 10									0,72	0,82	0,95	1,10	1,30	1,53	1,77	2,09	- 10
			•			Попр	авочн	ый ко	эфф	ициен	IT K _{Δp}	U					
∆р (бар)	0,5	1	1,5	2	2,5	3	3,5	4	4,5	5	5,5	6	6,5	7	8	9	∆р (бар)
K_{\Deltap}	4,25	3,00	2,46	2,13	1,90	1,74	1,61	1,50	1,42	1,35	1,28	1,23	1,18	1,14	1,06	1,00	K_{\Deltap}
∆р (бар)	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	∆р (бар)
K_{\Deltap}	0,95	0,91	0,87	0,83	0,80	0,78	0,75	0,73	0,71	0,69	0,67	0,66	0,64	0,63	0,61	0,60	K_{\Deltap}

Тем. жидкости на входе в вентиль	R	407	С					ный к ратура									Тем. жидкости на входе в вентиль
°C		l	+20	+15	+10	+5	0	-5	-10	-15	-20	-25					°С
<u> </u>						- V	•	_									
+ 55			1,23	1,26	1,28	1,31	1,34	1,37	1,40	1,63	1,98	2,42					+ 55
+ 50			1,13	1,15	1,17	1,19	1,22	1,24	1,27	1,48	1,79	2,18					+ 50
+ 45			1,05	1,06	1,08	1,10	1,12	1,14	1,17	1,35	1,64	2,00					+ 45
+ 40			0,98	0,99	1,01	1,02	1,04	1,06	1,08	1,25	1,52	1,84					+ 40
+ 35			0,92	0,93	0,94	0,96	0,98	0,99	1,01	1,17	1,41	1,71					+ 35
+ 30	4		0,87	0,88	0,89	0,90	0,92	0,93	0,95	1,10	1,32	1,60					+ 30
+ 25	1		0,82	0,83	0,84	0,85	0,87	0,88	0,90	1,03	1,25	1,51					+ 25
+ 20	1	9	0,78	0,79	0,80	0,81	0,82	0,84	0,85	0,98	1,18	1,43					+ 20
+ 15				0,75	0,76	0,77	0,78	0,80	0,81	0,93	1,12	1,35					+ 15
+ 10					0,73	0,74	0,75	0,76	0,77	0,89	1,07	1,29					+ 10
+ 5						0,71	0,72	0,73	0,74	0,85	1,02	1,23					+ 5
0							0,69	0,70	0,71	0,81	0,98	1,18					0
						Попр	авочн	ный ко	эфф	ициен	т К _{∆р}						
∆р (бар)	0,5	1	1,5	2	2,5	3	3,5	4	4,5	5	5,5	6	6,5	7	8	9	∆р (бар)
K_{\Deltap}	4,78	3,33	2,72	2,36	2,11	1,92	1,78	1,67	1,57	1,49	1,42	1,36	1,31	1,26	1,18	1,11	K _{∆p}
∆р (бар)	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	∆р (бар)
K_{\Deltap}	1,05	1,01	0,96	0,92	0,89	0,86	0,83	0,81	0,79	0,76	0,75	0,73	0,71	0,70	0,68	0,67	K_{\Deltap}

Документ №: Взамен: Дата: A3.5.010/E 2 A3.5.010/E 1 22.09.2003

Тем. жидкости на входе в вентиль	R	404	Α			-		ный к ратура									Тем. жидкости на входе в вентиль
°С			+20	+15	+10	+5	0	-5	-10	-15	-20	-25	-30	-35	-40	-45	°С
+ 55			1,38	1,42	1,46	1,50	1,55	1,61	1,68	1,96	2,36	2,83	3,43	4,16	5,12	6,34	+ 55
+ 50			1,20	1,23	1,26	1,30	1,34	1,38	1,43	1,67	1,99	2,37	2,85	3,43	4,18	5,14	+ 50
+ 45			1,07	1,10	1,12	1,15	1,18	1,22	1,26	1,46	1,74	2,05	2,46	2,95	3,57	4,35	+ 45
+ 40			0,97	0,99	1,02	1,04	1,07	1,09	1,13	1,30	1,55	1,82	2,17	2,59	3,13	3,80	+ 40
+ 35			0,90	0,91	0,93	0,95	0,97	1,00	1,02	1,18	1,40	1,64	1,96	2,33	2,80	3,38	+ 35
+ 30			0,83	0,84	0,86	0,88	0,90	0,92	0,94	1,08	1,28	1,50	1,78	2,11	2,53	3,05	+ 30
+ 25			0,77	0,79	0,80	0,82	0,83	0,85	0,87	1,00	1,18	1,39	1,64	1,94	2,32	2,79	+ 25
+ 20			0,73	0,74	0,75	0,77	0,78	0,80	0,81	0,94	1,10	1,29	1,52	1,80	2,15	2,58	+ 20
+ 15				0,70	0,71	0,72	0,73	0,75	0,76	0,88	1,03	1,21	1,42	1,68	2,00	2,40	+ 15
+ 10					0,67	0,68	0,69	0,71	0,72	0,83	0,97	1,13	1,34	1,58	1,88	2,25	+ 10
+ 5						0,65	0,66	0,67	0,68	0,78	0,92	1,07	1,26	1,49	1,77	2,11	+ 5
0							0,63	0,64	0,65	0,75	0,88	1,02	1,20	1,41	1,67	2,00	0
- 5								0,61	0,62	0,71	0,83	0,97	1,14	1,34	1,59	1,90	- 5
- 10									0,60	0,68	0,80	0,93	1,09	1,28	1,52	1,81	- 10
						Попр	авочн	ный ко	эфф	ициен	іт К _{∆р}	٦(7	•			
∆р (бар)	0,5	1	1,5	2	2,5	3	3,5	4	4,5	5	5,5	6	6,5	7	8	9	∆р (бар)
K_{\Deltap}	4,55	3,21	2,62	2,27	2,03	1,86	1,72	1,61	1,52	1,44	1,37	1,31	1,26	1,21	1,14	1,07	K_{\Deltap}
∆р (бар)	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	∆р (бар)
K _{∆p}	1,02	0,97	0,93	0,89	0,86	0,83	0,80	0,78	0,76	0,74	0,72	0,70	0,69	0,67	0,66	0,64	K_{\Deltap}

									P1								Г
Тем. жидкости на	P	507						ный к									Тем. жидкости на
входе в вентиль	11	JU 1				T	емпер	ратура	а кипе	° RNH	С						входе в вентиль
°C			+20	+15	+10	+5	0	-5	-10	-15	-20	-25	-30	-35	-40	-45	°C
+ 55			1,36	1,39	1,43	1,47	1,52	1,57	1,62	1,92	2,29	2,75	3,35	4,11	5,11	6,44	+ 55
+ 50			1,19	1,22	1,24	1,28	1,31	1,35	1,40	1,64	1,95	2,33	2,81	3,43	4,23	5,29	+ 50
+ 45			1,07	1,09	1,11	1,14	1,17	1,20	1,23	1,45	1,71	2,04	2,45	2,97	3,64	4,53	+ 45
+ 40			0,97	0,99	1,01	1,03	1,06	1,08	1,11	1,30	1,53	1,82	2,18	2,63	3,22	3,98	+ 40
+ 35			0,90	0,91	0,93	0,95	0,97	0,99	1,01	1,18	1,39	1,65	1,97	2,37	2,89	3,56	+ 35
+ 30			0,83	0,85	0,86	0,88	0,89	0,91	0,93	1,09	1,28	1,51	1,80	2,17	2,63	3,23	+ 30
+ 25		49	0,78	0,79	0,80	0,82	0,83	0,85	0,87	1,01	1,18	1,40	1,66	1,99	2,42	2,97	+ 25
+ 20	1	I_{\sim}	0,73	0,74	0,75	0,77	0,78	0,79	0,81	0,94	1,10	1,30	1,54	1,85	2,24	2,74	+ 20
+ 15		100		0,70	0,71	0,72	0,73	0,75	0,76	0,88	1,03	1,21	1,44	1,73	2,09	2,55	+ 15
+ 10		0			0,67	0,68	0,69	0,70	0,72	0,83	0,97	1,14	1,35	1,62	1,95	2,38	+ 10
+ 5						0,64	0,65	0,67	0,68	0,78	0,92	1,07	1,27	1,52	1,83	2,23	+ 5
0							0,62	0,63	0,64	0,74	0,87	1,02	1,20	1,43	1,73	2,10	0
- 5								0,60	0,61	0,70	0,82	0,96	1,14	1,35	1,63	1,98	- 5
- 10									0,58	0,67	0,78	0,91	1,08	1,28	1,54	1,87	- 10
						Попр	авочн	ный ко	эфф	ициен	т К∆р						
∆р (бар)	0,5	1	1,5	2	2,5	3	3,5	4	4,5	5	5,5	6	6,5	7	8	9	∆р (бар)
K_{\Deltap}	4,63	3,27	2,67	2,31	2,07	1,89	1,75	1,64	1,54	1,46	1,40	1,34	1,28	1,24	1,16	1,09	K_{\Deltap}
∆р (бар)	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	∆р (бар)
K_{\Deltap}	1,03	0,99	0,94	0,91	0,87	0,85	0,82	0,79	0,77	0,75	0,73	0,71	0,70	0,68	0,67	0,65	K_{\Deltap}

Документ №: Взамен: Дата:

A3.5.010/E 2 A3.5.010/E 1 22.09.2003

Тем. жидкости на	D	121				Поп	равоч	ный к	оэфф	оицие	нт K _t						Тем. жидкости на
входе в вентиль	K	R134a Температура кипения °C									входе в вентиль						
°C			+20	+15	+10	+5	0	-5	-10	-15	-20	-25					°C
+ 60			1,27	1,30	1,33	1,36	1,40	1,44	1,48	1,75	2,08	2,46					+ 60
+ 55			1,18	1,21	1,23	1,26	1,29	1,33	1,36	1,60	1,90	2,25					+ 55
+ 50			1,10	1,13	1,15	1,17	1,20	1,23	1,26	1,48	1,76	2,07					+ 50
+ 45			1,04	1,06	1,08	1,10	1,12	1,15	1,17	1,38	1,63	1,92					+ 45
+ 40			0,98	0,99	1,01	1,03	1,05	1,08	1,10	1,29	1,52	1,79					+ 40
+ 35			0,92	0,94	0,96	0,97	0,99	1,01	1,03	1,21	1,43	1,68					+ 35
+ 30			0,88	0,89	0,91	0,92	0,94	0,96	0,98	1,14	1,35	1,58					+ 30
+ 25			0,83	0,85	0,86	0,87	0,89	0,91	0,92	1,08	1,27	1,49			- 1		+ 25
+ 20			0,80	0,81	0,82	0,83	0,85	0,89	0,88	1,02	1,21	1,41				\mathbf{O}	+ 20
+ 15				0,77	0,78	0,79	0,81	0,82	0,84	0,97	1,15	1,34		1	1		+ 15
+ 10					0,75	0,76	0,77	0,78	0,80	0,93	1,09	1,28					+ 10
+ 5						0,73	0,74	0,75	0,76	0,89	1,04	1,22)		+ 5
0							0,71	0,72	0,73	0,85	1,00	1,17		1			0
- 5								0,69	0,70	0,82	0,96	1,12	1	-			- 5
- 10									0,68	0,79	0,92	1,07	V				- 10
			•			Попр	авочн	ный ко	эфф	ициен	т К∆р	V					
∆р (бар)	0,5	1	1,5	2	2,5	3	3,5	4	4,5	5	5,5	6	6,5	7	7,5	8	∆р (бар)
$K_{\!\scriptscriptstyle\Deltap}$	3,50	2,48	2,02	1,75	1,57	1,43	1,32	1,24	1,17	1,11	1,06	1,01	0,97	0,94	0,90	0,88	Κ _{Δp}
∆р (бар)	8,5	9	9,5	10	10,5	11	11,5	12	13	14	15	16	17	18	19	20	∆р (бар)
K_{\Deltap}	0,85	0,83	0,80	0,78	0,76	0,75	0,73	0,72	0,69	0,66	0,64	0,62	0,60	0,58	0,57	0,55	K_{\Deltap}

Тем. жидкости на			_			Поп	าลหาน	ный к	റാന്	MIINE	нт К.						Тем. жидкости на
	R	R410A					Поправочный коэффициент К _t Температура кипения °C										
входе в вентиль				•			емпер		а кипе								входе в вентиль
°C			+20	+15	+10	+5	0	-5	-10	-15	-20	-25	-30	-35	-40	-45	°C
+ 60			1,54	1,56	1,58	1,60	1,63	1,66	1,69	1,98	2,28	2,80	3,28	3,93	4,85	5,95	+ 60
+ 55			1,35	1,36	1,38	1,40	1,42	1,44	1,46	1,71	1,96	2,41	2,81	3,36	4,13	5,05	+ 55
+ 50			1,21	1,22	1,23	1,25	1,26	1,28	1,30	1,52	1,74	2,13	2,48	2,96	3,63	4,42	+ 50
+ 45			1,10	1,11	1,12	1,14	1,15	1,16	1,18	1,38	1,57	1,92	2,24	2,66	3,26	3,96	+ 45
+ 40			1,02	1,02	1,03	1,04	1,06	1,07	1,08	1,26	1,44	1,76	2,04	2,43	2,97	3,60	+ 40
+ 35		1	0,95	0,95	0,96	0,97	0,98	0,99	1,00	1,17	1,33	1,62	1,88	2,24	2,73	3,31	+ 35
+ 30	1	11/1	0,89	0,89	0,90	0,91	0,92	0,93	0,94	1,09	1,24	1,51	1,75	2,08	2,54	3,07	+ 30
+ 25			0,84	0,84	0,85	0,85	0,86	0,87	0,88	1,02	1,17	1,42	1,64	1,95	2,37	2,87	+ 25
+ 20	M.	9	0,79	0,79	0,80	0,81	0,81	0,82	0,83	0,97	1,10	1,34	1,55	1,83	2,23	2,69	+ 20
						Попр	авочн	ный ко	эфф	ициен	т К _{∆р}						
∆р (бар)			0,5	1	1,5	2	2,5	3	3,5	4	4,5	5	5,5	6	6,5	7	∆р (бар)
K_{\Deltap}			5,31	3,75	3,07	2,66	2,37	2,17	2,01	1,88	1,77	1,68	1,60	1,53	1,47	1,42	K_{\Deltap}
∆р (бар)			7,5	8	8,5	9	9,5	14	15	16	17	18	19	20	21	22	∆р (бар)
$K_{\!\scriptscriptstyle \Deltap}$			1,37	1,33	1,29	1,25	1,22	1,00	0,97	0,94	0,91	0,89	0,86	0,84	0,82	0,80	K_{\Deltap}

Документ №: Взамен: Дата: A3.5.010/E 2 A3.5.010/E 1 22.09.2003

Технические характеристики

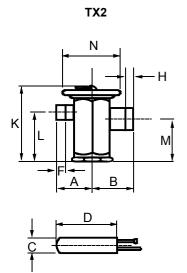
Совместимые среды *)	СFC, HCFC, HFC, минеральные и синтетические масла	Допустим. утечки	≤ 1% номин. производительности
Максим. рабочее давление	41 бар	Соединение	Медь, пайка ODF
Давление разрушения	207 бар	Заправки	He содержат CFC
Диап. температуры среды	-45 120°C	Класс защиты	Стойкость к соляному туману

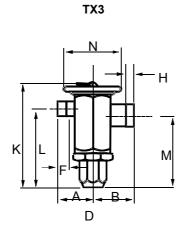
^{*)} вентили TX2 / TX3 не разрешено использовать с воспламеняющимися веществами.

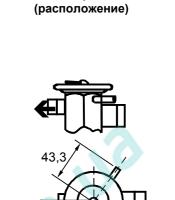
Тип заправки	Хладагент	Рекомендуемый диапазон температур кипения °C
Жидкость (без МОР)	R22, R404A, R507	-45 +20
Жидкость (без МОР)	R134a, R407C	-25 +20
Жидкость (тепловой насос)	R22	-35 +20
МОР 3.3 бар	R134a	-25 +9
МОР 6.4 бар	R22	-45 +10
МОР 6.4 бар	R407C	-25 +12
МОР 2.3 бар	R404A	-4521
МОР 2.3 бар	R507	-4520
МОР 10.9 бар	R410A	-30 +13

Количество в упаковке и вес брутто при отгрузке

	ТХЗ со стандартной настройкой	TX2 со стандартной настройкой	TX2 со специальной настройкой
Количество в упаковке	12	12	24
Минимальный объем заказа	1	1	96
Вес брутто, кг	0.50	0,47*	0,47*
(Упаковка)	(Отдельная)	(Отдельная)	(Общая)


^{*) 0,5} кг для ТХ2 с встроенным обратным клапаном




Документ №: Взамен: Дата:

A3.5.010/E 2 A3.5.010/E 1 22.09.2003

Размеры

Внешнее выравнивание

30° +/- 2°

Корпус:

Модель	Размер с	оединен.		Обозначенные размеры (мм)									
	дюймы			T	X2 / TX	.3			TX2		TX3		
	Вход	Выход	Α	В	F	Н	N	K	L	М	K	L	М
TX2/TX31	1/4"	3/8"	43.3	44.1	7.9	7.9							
TX2/TX32	1/4"	3/8"	43.3	44.1	7.9	7.9							
TX2/TX33	1/4"	3/8"	43.3	44.1	7.9	7.9							
TX2/TX34	3/8"	1/2"	44.1	44.1	7.9	9.5	44.5	66.7	44.5	34.5	86.5	64.7	54.4
TX2/TX35	3/8"	1/2"	44.1	44.1	7.9	9.5							
TX2/TX36	3/8"	1/2"	44.1	44.1	7.9	9.5							
TX2/TX37	1/2"	5/8"	44.1	44.5	9.5	12.7							
TX2/TX38	1/2"	5/8"	44.1	44.5	9.5	12.7							
TX2/TX39	1/2"	5/8"	44.1	44.5	9.5	12.7							

Термобаллон:

Заправка	Хладагент	Размер термо	Длина капилляр.	
		D (длина)	С (диаметр)	трубки
Все заправки	Bce	53.2	12.8	1.5 м
Специальная заправка жидкостью	R 22	58.7	19.2	1.5 м
(ТХ2 с обратным клапаном)				

Документ №: Взамен: Дата: A3.5.010/E 2 A3.5.010/E 1 22.09.2003

ALCO CONTROLS не несет ответственности за ошибки в опубликованных данных. Характеристики данных изделий, спецификации и литература могут меняться без предварительного уведомления. Представленная здесь информация основывается на испытаниях, проведенных ALCO CONTROLS в соответствии с существующей технической информацией по данному вопросу. Предназначено для использования специалистами, имеющими

ибки в соответствующие технические навыки и образование, по их зделий, собственному усмотрению, под их ответственность. Так как мы не пього можем проконтролировать использование данного продукта, мы не ся на несем ответственность за неправильное использование данного ии с продукта и последствия этого использования.

Этот документ отменяет все предыдущие версии.

		Phone:	Fax:
ALCO CONTROLS	Benelux	+31 (0)492 472 416	+31 (0)492 472 621
Emerson Electric GmbH & Co OHG	Denmark & Finland	+44 (0) 1635 876 161	+44 (0) 1635 877 111
Postfach 1251	Eastern Europe	+32 (0)87 305 061	+32 (0)87 305 506
	France	+33 (0)4 78 66 85 70	+33 (0)4 78 66 85 71
Heerstraße 111	Germany	+49 (0)6109 6059 -0	+49 (0)6109 6059 40
D-71332 Waiblingen	Italy	+39 02 961 781	+39 02 961 788 888
Germany	Middle East & Africa	+32 (0)87 305 550	+32 (0)87 305 506
Phone49-7151-509-0	Poland	+48 225 485 205	+48 225 485 255
Fax49-7151-509-200	Russia & Cis	+7 495 9819811	+7 495 9819816
	Spain & Portugal	+34 93 41 23 752	+34 93 41 24 215
www.alco-controls.com	Sweden & Norway	+44 (0) 1635 876 161	+44 (0) 1635 877 111
www.aico-controis.com	UK & Ireland	+44 (0) 1635 876 161	+44 (0) 1635 877 111